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ABSTRACT A—QJ\

Two-dimensional flow of an incompressible, inviscid fluid in a region
with a horizontal bottom of infinite extent and a free upper surface is
considered. The fluid is acted on by gravity and has a non-diffusive,
heterogeneous density which may be discontinuous. It is shown that the
governing equations allow both periodic and single-crested progressing waves
of permanent form, the analogues, respectively, of the classical cnoidal and
solitary waves. These waves are shown to be critical points of flow related

functionals and are proved to exist by means of a variational principle.
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SIGNIFICANCE AND EXPLANATION

- The research in experimental and theoretical hydrodynamics in the last
few decades has indicated that solitary waves play a special role in the
evolution of general disturbances in fluids. Still, the investigation of
solitary waves and, in particular, the use of variational principles
associated with these waves is far from complete. While variational
principles for surface waves in fluids of constant density have been discussed
in the literature, the existence proofs given here appear to be the first
rigorous use of critical point theory to obtain surface waves. Moreover, we
treat a class of density profiles not heretofore included in an exact theory.

In this report we treat a two-dimengional flow of an incompressible,

inviscid fluid in a region with a horizontal bottom of infinite extent and a
free upper surface. The fluid is acted on by gravity and has a non-diffusive,
variable density which may be discontinuous. It is shown by means of a
variational principle that the governing equations allow both periodic and
single-crested progressing waves of permanent form, the analogues,
respectively, of the classical cnoidal and solitary waves. The solitary waves
are obtained from periodic ones as the periods grow unboundedly. All of the
waves obtained have elevated streamlines and have speeds greater than the

critical speed associated with the ambient dénsity. Further, the amplitudes

are shown to be exponentially decreasing away from the crest.
.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




A VARIATIONALZ APPROACH TO SURFACF SOLITARY WAVES
R. B. L. Turner

INTRODUCTION

This paper is concerned with two-dimensional flow of an incompressible, inviscid fluiad
in a region with a horizontal bottom of infinite extent and a free upper surface. The
fluid is acted on by gravity and has a non-diffusive variable density which may be
discontinuous. It is shown that the governing eguations allow both periodic and single-
crested progressing waves of permanent form, the analogues, respectively, of the classical
cnoidal and solitary waves. Moreover, solitary waves are shown to arise from periodic ones
as the period grows unboundedly. A survey of earlier work on steady waves in stratified
fluids and references to the literature are given in [1] and [2]. The work on surface
waves in fluids of constant density has a much longer history, going back to the middle of
the nineteenth century; see (2], [3], (4] for references and accounts of the development of
the subject.

The problem treated here is close to that examined by Ter-Krikorov [5] who treats a
smoothly varying density, decreasing with height, and allows a free or fixed upper
surface. He shows that from each vertical mode of a linearized flow problem there is
bifurcation to a wave of arbitrarily prescribed horizontal period, including that of
"infinite period”, i.e., & solitary wave. The methods used are close to the perturbation
technique of Friedrichs and Hyers (6) who gave an alternate proof to that of Lavrentiev (7)
for the existence of small amplitude surface solitary waves. The techniques used here are
variational in nature. They are an outgrowth of the work of Bona, Bose, and Turner (2] on
smoothly stratified flows in regions with fixed upper and lower boundaries and are
particularly close to the methods used by the author in [1]), wherein we considered two
fixed boundaries, but allowed a discontinuous density. The present paper is based on the

observation that the free surface can be treated as an additional discontinuity at which

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and the National
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the density drops to zero. The estimates and proofs required here are similar to those in
(1), differing mainly in the behavior near the free surface. To shorten the length of the
presentation we will frequently make reference to proofs in (1], pointing out how the free
surface is accommodated.

Variational principles satisfied by free surface flows of constant density have been
described by a number of authors (cf. e.g. [8]=[13] and their lists of referencss). In
[9], [10] and [13]) & case is made for the use of dynamically invariant quantities in a
variational characterization of a flow as a step toward a treatment of stability in the
spirit of Liapunov. Similar ideas have been carried through for the Korteveg de Vries and
other model equations (of {14]), ([15], [16]). It appears difficult to base a rigorous proof
of the existence of steady wave soluticns of the Euler equations on the dynamic principle
given in [13]. Here we obtain waves using a different principle and, to our knowledge,
ours is the first rigorous use of a variational procedure to obtain periodic and solitary
surface waves. Garabedian gives a critical point principle for periodic surface waves, but
it appears that his appeal to Morse theory needs further justification. 1It can be shown .
that the functional he uses is not uniformly positive definite at the origin, as claimed.
The principle used here is Lagrangian in character and reduces to a constrained variational
problem. The separate functionals used are not constants of time depsndent motions and so
the method does not immediately suggest a means for establishing stability. However, we
feel that a further understanding of the variational structure of the problem will be
useful. It should be noted that in a related problem, that of vortex flow, principles
allied to dynamics have been successfully used to establish the existence of steady flows
(cf. [17] and references given there).

Here a steady wave will correspond to a critical point of a “displacement" functional
on a manifold of prescribed "kinetic energy” R. For the classical solitary wave what
corresponds here to R almost certainly takes values in a finite range 0 < R ¢ ; < =
(the continua found in [4] have this property). Thus it is to be expected that with
variable density the range of R will be finite. This limitation is reflected in a lack

of coercivity in the analytical problem derived here. Our method of treatment involves
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introducing artificial coercivity and combining this with estimates on the size of the

solution of the altered problem. The outcome for the original problem is a restriction

0 ¢CR K E on allowable energies with the size of R buried among elliptic estimates.
While it is difficult to compare the size of the solutions obtained here with those of Ter-
Krikorov, they must both be considered to have small amplitude. However, the variational
approach, with improved estimates, could provide finite amplitude waves. Apart from
treating less regular densities than conaidered in [5]) we can show that in the presence of
a free surface there are always waves of elevation with amplitudes decreasing away from the
crest. On the other hand, Ter~Krikorov's techniques give an explicit laylptotlc_forn for
the wave near a bifurcation from a parallel flow, though not uniformly in the horizontal
variable, and are applicable to bifurcation from higher vertical modes, not covered by the
treatment here. It should be noted that in the case of constant density it has been shown
that families of cnoidal and solitary waves exist which include small amplitude wvaves and
the Stokes wave with a sharp crest having a 120° opening (cf. (4], (18], [19].

The organization of the present paper is as follows. 1In section 1 the physical
situation is described and the relevant mathematical equations set down. The analytical
problems are pogsed and the main results are described in theorem 1.2. The remainder of the
paper is devoted to establishing these results. In section 2 a variational formulation is
given and an “"extended” problem with artificial coercivity is solved. 1In section 3
estimates for the solution of the extended problem are given. Section 4 contains estimates
which establish that solutions of the extended problem, when restricted to have small
energy, solve the original flow problem in the periodic case. Section 5 deals with
exponential decay of wave amplitudes away from the crest and the existence of solitary

waves as the limit of periodic ones when the periods increase indefinitely.
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1. STEADY FLOWS WITH A FREE SURFACE

Here we briefly describe the passage from a physical model of wave motion to a

boundary value problem for a partial differential equation. For a more complete discussion
we refer to [1) and [2)., Consider a heterogeneous, incompressible fluid acted upon by

gravity and restrict attention to flows which are two-dimensional. That is, assume all

quantities depend only on a horizontal coordinate, a vertical coordinate, in the direction

of gravity, and on time. The fluid is further assumed to be inviscid and non-diffusive,

the latter property to be elaborated in the following paragraphs. While our interest is in

wave patterns which progress horizontally at a fixed velocity c, we can remove the time

dependence by considering Cartesian coordinates referred to & moving crest of s wave. It

is then possible to seek a steady flow in a region which is independent of time. The

region will have to be determined as part of the solution of the problem. However, we do

assume the flow is over an infinite horizontal bottom. Let x be a coordinate in the

horizontal boundary and y, a vertical coordinate chosen so that the bottom boundary is 1

at y = -1 and so that the acceleration due to gravity is represented by (0,-g) with

g > 0., The fluid ia assumed to have a free surface .
y = hix) > =1 (1.1) -
which is to be determined, To begfh with we require h to be continuous and satisty
lim hi{x) = 0 {(1.2)
b e 3
The fluid is then assumed to occupy the region
L {tx,y} =1 ¢ y < hix),=» ¢ x ¢ =} (1.3)
For (x,y) € 'h let
q= (U,v) (1.4)

where U(x,y) and V(x,y), respectively, are the horizontal and vertical components of

fluid velocity in a moving frame. A flow is sought which is steady in the moving frame so
the Buler equations take the form

plg * Vg = -¥p - g0e, in LY (1.5)

B where p = p(x,y) 4is the density, p 1is the pressure, and e,

= (0,1). The condition of
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incompressibility becomes

aiv g =0 (1.6)
and the condition of nondiffusivity entails
g %%=0 (1.7)
throughout F,. Supplementing equations (1.5), (1.6), and (1.7) we have the following
boundary conditions. The fluid should not penetrate the horizontal bottom; i.e.,
Vix,~1) =0, -=<x<ce, (1.8)
On the free surface 8 = {(x,y)ly = h(x),-® < x < =} there are two conditions: a
kinematic condition requiring the velocity to be tangential and a second requiring the
pregsure to be zero; i.e.
-th+V' 9 on § (1.9)
and
p=0 on 8. (1.10)
Here h,  denotes a derivative. Finally, conditions must be specified at x = teo. We can
specify a velocity distribution at infinity and here take the simplest case of a wave
propagating in fluid which, in “"laboratory” coordinates, is at rest at infinity. FPor
coordinates based in a wave moving to the left with velocity ¢ the condition becomes
1im (U,v} = (c,0) (1.11)
x+to
Further, the density in the "undisturbed region” is specified and we take it to depend only
on y. Thus
lim p(x,y) = p(y) (1.12)
x+ie
vhere p(y) 4is a decreasing function of y for =1 < y < 0, normalized to satisfy
p(0) = 1,
The problea that will occupy us is to f£ind c, h, q, p and p satisfying (1.1},
(1.2), (1.5)=(1.12). The regularity required of the functions will be made more precise in

what follows. For now we continue the discussion at a forwmal level. In particular, we
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assume to begin with that o is continuocusly differentiable although we ultimately want to
allow discontinuous densities.
The conditions (1.6) and (1.7) imply that there is a pseudo-stream-function

V= ¥x,y) such that
Wy, L, V2 (1.13) )

and that p is a function of ¥, p(¥). Prom Bernoulli's theorem the total head is
constant along streamlines, hence on level sets of . Thus
1 2 2
H=p+ 3 p(U” + V') + pgy = H(W) (1.14)
Eliminating p, using the two components of the vector equations (1.5), one finds that ¢

satisfies the equation

AVx,y) + gyg-%-g% (1.15)
(cf. Dubreil-Jacotin [20]), Long [21]) and Yih [22]), If the density p is specified as a
function of ¢ and if the dynamics are specified by giving H(¥y), then (1.15) is a .
semilinear elliptic equation for W¥(x,y). Any solution of (1.15) gives rise to a solution
of (1.5) with U, V and p obtained from (1.13) and (1.14). PFor now we leave aside the
question of boundary conditions on the top and bottom of F), and examine the implications
of (1.11) and (1.12).

In the search for a solitary wave, a disturbance which should be of essentially finite
extent, it is natural to ask that for large x, #$(x,y) should approach a pseudo-stream-
function corresponding to a flow with velocity (c,0) in a stream of density o(y). Thus,
letting

i = [ oV 2aa (1.16)
we require °
Vix,y) - Wy) +0 as x| » =, (1.17)
The density p (we use the same symbol) associated with the stream coordinate ,
compatible with that already specified at x = t», ig
PLY) = ply(¥)) (1.18)

where §(0) is the function inverse to ;(y). The expression (1.18) is taken as the
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Similarly, the total head associated with the stream coordinate

definition of p(¥).

is taken to be

() = ply(9) + 3 p(9c’ + s(Hay(¥) (1.19)

N where p is hydrostatic:

P" =g f p(s)as .
0

$¥{x,y) of (1.15). Note that for

given we can now seek a solution

Wwith o(¥) and H(¥)

L]
any constant ¢, ¥(y) (cf. 1.16) is a soltuion of (14). We call it a trivial solution.

The flows examined here will have free surfaces and discontinuities in velocity

In order to deal with a problem in a fixed domain and

occurring along certain streamlines.

to confine irregular behavior to coordinate lines we replace (1.15) by an equation for vy

in semi-Lagrangian independent coordinates x and ¥. The interest here is in flows

without reversal; i.e. with U > 0 or -:-3 > 0 and so an inversion yielding y(x,¥) is

reagonable. Corresponding to (1.15) is the equation

N . 1ot SOV

2
' 3 Ixy 3 Y )
i THEE R RS “.2n
]

(c€. [1], [5])), obtainable using the relations

L Ony =90, *r"v‘ 1 (1.22)

x

L]
Naturally, y = ;(0), the inverse of VY(y), is a solution of (1.21) and we refer to it as

trivial. Corresponding to (1.17) is a condition

yix,9) - y($) +0 as |x| + =, (1.23)

which is imposed uniformly in ¢ . < y < 0 wvhere
-1

-1
: =W =ef o (1.24)
0

The condition

yix,¥ ) = -1 (1.25)

replaces (1.9), and from (1.22) it is clear that (1.9) will be satisfied merely by choosing

-7-
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hix) = y(x,0) . (1.26)

Since 9(02 + Vz) =- (1 + yi)y;z, the pressure condition at the fluid surface becomes

p(x,0) = constant {(1.27)
vhere
14+ y2
1 x
Pix,¥) = H(W) - 5 (~—57) - st¥ay(x, ¥ , (1.28)
Y
v

using (1.14). Suppose that a continuously differentiable p(y) is given and that for any

fixed speed c, p(¥y) and H(Yy) are defined by (1.18) and (1.19). It is then possible to

interpret the foregoing equations and conditions in a classical sense. For a density o
with posaible discontinuities a meaning must be given to equation (1.21) and we do that

next.

Let Ck'B on a domain consist of functins with continuous derivatives through order

k, each satisfying a HBlder condition with exponent B. For a more complete description
of spaces see (1), section 1. Suppose p(y), given initially, satisfies

i) p is nonincreasing on [-1,0]

1,8

ii) pec for some B > 0 except for jumps (1.29)

at points ni 1 =1 < n1 < n2 € ees € n“ <0
where p is continuous from the right.

The corresponding function p(¥) from (1.18) will have discontinuities at points
0 N+1

WJ - 6(nj), = 1,2,...,N. Extending the domain of vj to n = =1 and n =0 (so

0 ° 0
that ¢ = y(n ) = W_1) we let
o arx (¥, 3 =0,1,.00,N (1.30)
and D = R X (0_1,0). For 0 < a< 1 let

u? - {yly e co"(o),yx e c®o),y e ¢'"%ody,

(1.31)

and Yy >0 in nj, 3= 1,2,...,N}

Since (1.21) has a divergence form, the notion of a weak solution where p and H are

smooth is described in a standard way (cf. [1]) (1.13)). A weak solution can also be




defined with the presence of discontinuities in p and H and is equivalent to the

following definition which stresses a physical aspect of the flow.

Definition 1.1. We call y e ¥® a solution of (1.21) if and only if

1) y 1is a weak solution of (1.21) in Dj for 3 = 1,2,...,N.
{ii) The pressure p(x,¥) computed from (1.28) in each Dj, §=0,1,2,,0.,N i8 the

restriction to Dj of a continuoues function p defined on D
The solitary wave problem can be posed as follows.

Problem P e Finda ¢> 0 and, for some a > 0, a nontrivial (1.32})

function y € n“, satisfying (1.21), (1.23), (1.25) and (1.27).

In the course of solving the solitary wave problem P_ we will solve the corresponding

problem for periodic waves.

Problem Py Find a ¢ > 0 and a nontrivial y € Ma. y a (1.33)

2k periodic function of x, satisfying (1.21), (1.25) and (1.27).

The interpretation of a solution of problem P, in terms of a solitary wave hinges on
the condition (1.23), requiring the flow to be “"trivial™ at x = tw, While the physical
interpretation of a solution of problem Py for finite %k, 1is tenuous, we will
nevertheleas find solutions which are 2k periodic in x and show that they are
exponentially decaying from crest to trough. Thus they might be viewed as a train of waves
with quiescent zones of approximately trivial flow between the crests. In any case, the
periodic formulation is a convenient analytical devica.

To analyze the problems Py for k < ® and to expand the class of density profiles,
we agsociate with any density function p described by (1.29) a family of smooth densities

as follows. For a & which is positive but smaller than M- ndt for J = 1,2,...,N
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1,8

and for each §, 0 ¢ § ¢ 60, let pa(y) be a nonincreasing function of class C such

that
NP 3
Pgly) = ply) for y¢ u (n - &) (1.34)
I=1
and set oo(y) = p(y)s The manner in which the jump at nj is approximated by a smooth
transition is immaterial to our estimates and so we need not specify 96 on the intervals

3 j), J=1,2,...,N. The estimates in the subsequent sections give a uniform

(n° - §,n
picture of the transition from smooth to discontinuous densities.

In order to summarize the main results of the paper in a convenient form it is
necessary to anticipate a transformation to be introduced in section 2 and give s;ne

additional notation. A rescaled stream variable is given by

Y = j 1/:' (1.35)
0 (y(s))

(cf, 2.14) so that at x = t® the streamline with label n has height n. The expression
wix,n) = y(x,;(n)) - n

(cf. 2.2) represents, for each x, the displacement from its position in a trivial flow,

of the streamline which has height n at x = t® (under the condition 1.23). The

equation satisfied by w, with x and n as independent coordinates, is given by (2.12}

(where x = x, and n = Xy Jo 1Its formal linearization about w = 0 is

a

[ p(m) —- 35 Pt 55 ]-qgﬁz in R % (-1,0)
(1.36)

z=0 at n= =1, c2 Eﬁ =gz at n= 0

(cf. 4.22), the last condition arising (as we shall see in proposition 2.1) from the
Bernoulli condition (1.27). The Sturm~Liouville problem obtained from (1.36) by letting

z = z(n) has a least eigenvalue A = g/cz. The corresponding value of ¢, denoted <5
to indicate its dependence on § through p = 96' is the largest speed (correspondingly,
the lowest spectral point) associated with (1.36). This speed is referred to in the
hydrodynamics literature as the "critical” speed or the speed with which infinitesimal long

waves travel. 1Its relevance here is that the waves we obtain have propagation speeds which

-10-
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are "supercritical®, i.e., they are larger than 4 A full discussion of these ideas has
been given by Benjamin [23).

The main results of the paper are contained in the following theorem. 1ts proof, and
explicit estimates related to the waves obtained, are spread over the ensuing sections. In
particular we refer to propositions 2.1, 2.2, 4.4, 4.6, 4.8 and 5.2 together with remarks
2.3, 4.9 and 5.3. Note that a discontinuous density is allowed when the parameter § = 0,

while a solitary wave corresponds to the case k = @&, by our convention.

Theorem 1.2. There are positive numbers ﬁ; ;(R), and a such that for 0 < § < 60,

0 <CRK i, and ;(R) < k €« the problem Pk for Py has a nontrivial solution y in

Hu corresponding to a speed ¢ with the following properties

“/3)-1/2 i.e. ¢ is "supercritical”

1Y ¢»> c6(1 - C1R
2) y has period 2k in x (for k < =),
The streamline displacement w satisfies
0 k 2
[ ] etmi 12— axan - g2
-1 =k n
4) wix,n) >0 for -1 < n <0,
S) wi(x,n) = w(-x,n) and for 0 < x € x' ¢ k
w(x,n) » wix',n),
6) |wj < Czexp[-Bx] and |%] < c3exp[-8x] on 0 <x<k fora f£>0.
The quantities R, t, a, C1, 62 and C; depend on p in (1.29); C, and C, also
depend on R and B.

~11-




2+ A VARIATION FORMULATION
In this section it is assumed that the density is smooth and given by (1.34) for
§ > 0, but the subscript is often omitted. The equation {1.21) is formally the Buler
equation for the functional

2

1 '+ yx 2
oy = [[ [ ( )+ go' (%) &= - ' (w)y]axaw , (2.1)
S 2 y* 2

where primes denote derivates. That is, the condition that ¢ has a critical point (zero
derivative) at the function y is expressed by(1.21). This will be made precise at a
later stage. Note that the first term in the integrand in (2.1) is merely the Dirichlet
integral in the new coordinates. As noted in section 1, y = ;(0) is a solution of
(1.21); thus it is formally a critical point of 9. If y(x,¥) is another solution of

(1.21) then

wix,n) = y(x,¥(n) = n (2.2)
is formally a critical point of
2 2
Gtw) = ‘{I 5 ot {4'1,,'1;—“ + go*(m ¥ ]axan (2.3)
where
Q= {((x,n}|=» < x <=, =1 <n<O} (2.4)

(cf. (1], §2). Here n is the stream coordinate introduced in (1.35) and w, the
vertical ;treamline displacement. We emphasize that for a nontrivial flow w #0, in
general; i.e., only at x = t* does one require that the streamline with label n have
height n. Note that with the new scaling p{(n) is the same function introduced at the
outset, describing the density as a function of height.

Just below the free upper surface of the flow the density has the positive value 1.
While the usual model for surface waves implicitly takea p = 0 in the atmosphere,
retaining only the Bernoulli pressure condition, it appears necessary for a workable
‘variational principle in the present context to explicitly incorporate a drop in density at

the upper surface. Starting with p (or 96) define

-12=




o pin); =-1<n<o
p(n) = (2.5)

0; n=20

The change in p at the one point n = 0 will not alter the first term in the integrand

in (2.3), but will alter the second term. Define

2 2
G(w) = [/ [% epln) {!§1;7-0 go* () §—]axdn . (2.6)
Q n
Bquivalently,
- 2
Gw) = Glw) = [ g AEK0) 4, (2.7

We turn now to the periodic version of the wave problem. Let

a = {tx,m) | Ix} <k, =1 < n< o} (2.8)
and
1 2 |Vv|2 o v2
stw) = [ 3 c%otny 3+ gpt(m 3] (2.9)
9, Yn

It will often be convenient to use the notation X, =%, x,= n, P1 - %5 and fi - %ﬁ—
i

for i = 1,2 where

2 2

ry P, (2.10)

1
£pyopy) = 3

Still proceeding formally, one verifies that if w (assumed to vanish when xy = ~1) is a

critical point of G, then with A = g/c2,

f Plx)E, (Wwheg =) [ 6'(x2)-z (2.11)

Qk i

for allowable “"variations” z. Here and in the sequel a repeated index is understood to be

summed over {1,2}. The equation (2.11) is merely a weak form of

13-
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-:; Px,)E, (VW) = Ap*(xydw in @
i
w=0 at x, = -1 (2.12)

P(Iz)fz(V\') = Ay at x, = 0.

We interrupt the reformulations of the problem at this point to show that a nongero smooth

solution of (2.12) gives rise to a nontrivial solution of problem P,.

Proposition 2,1. Suppose w € Cz(ﬂ)n c‘('d). It w, with w_> =1, satisfies (2.12)

n
for some ) > 0, then (cf. 2.2) y defined by
yix,¥) = n(y) + wix,n(y)) (2.13)
where
v ds
n(y) = I ze (2.14)
0 cp “(yls))
and
c=g/X (2.15)

satisfies equation (1.21) and the conditions (1.2%) and (1.27).
Proof. The correspondence between the elliptic equation (2.12) for w in O and the
equation (1.21) for y 4in D is shown exactly as in section 2 of (1]. Also the assertion
that y takes the value -t when ¢ = 0_1 follows trivially, To see that the pressure
condition (1.27) is satisfied start with

!Z(Vv) = )w

at x; = 0 (note p(0) = 1) and express the relation in the coordinates x,n:

“elado1a
L2 2 x.4 .0 (2.16)
(1¢vn) c

for n = 0. To compute the pressure from (1.28) the value of H for ns= 0 is needed.

Prom (1.19)
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2

Hl + gy(0)

1
o PO +oe

¥

2

1
=~ ¢

From the relations (1.16) and (2.2), evaluated where n=0 (or ¥=0) and p(0) = 1,
Wy = ¥y
and
v -1
- L] -
Yn " ¥yt

- c -1,

Yy

Hence the expression {1.28) for the pressure becomes

2
1 2 1. Yt 2
pix,0) = 3C T3 ~ogw
(1 + w)
n
= 0

when (2.16) is used, completing the proof of the proposition.
To obtain nontrivial solutions of Problem Pk‘k ¢ ») for a density which is smooth on
-1 € n<0 it will suffice to obtain nonzero periodic solutions of (2.12). The case of
discontinuities in density on =1 < n < 0 and the resolution of problem P_ for solitary
waves will be handled through limiting procedures.
The equation (2.11) can he expressed as
F'(v) = XB'(w) (2.17)

where

F(w) = [ p(x,)f(%)
f
k
{2.18)

and the primes in (2.17) denote derivatives (still to be defined in a auitable space). A

tempting approach to solving equation (2.17) is to consider
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sup Blw)
r(w)=const.

and obtain A as a Lagrange multiplier associated with an extremal w. However, B is i

unbounded on level sets of P. To see this consider the cagse that p £ 1 and let

1+ 1N
/ 1/2
lx| + Inl| /

on nk. Clearly w(x,0) * Lzy however, a simple estimate shows F(w) < &, Nevertheless,

w -

as shown in [1] for a similar problem without a free surface, the variational approach can
be salvaged by altering f 4in the integrand of P where |W| > r, for some positive

r, and then showing that a solution obtained by a variational procedure and having a
suitably restricted "energy” satisfies |[Vw| < r. The approach here is similar, but we

also take account of the free upper surface by an altered functional.

We now proceed to define a substitute for squation (2.17) as a step to obtaining the
rasults in theorem 1.2. We refer the reader to section 2 of {1] for proofs of some of the
asgertions to be made. We are still considering a family of densities Pge 0<8§<¢ 6,
(cf. (1.34)) which are smooth on =1 < n € 0 and which could reflect a rapid change in
density at certain levels in a fluid. A similar "smoothing” for 3 near nN=0 will be
useful, purely as an analytical device. let T = t(n) be a nonincreasing ¢? function on

(-»,0) which is zero for x, < -1 and which satisfies 1T(0) = -1. For each
e, 0<ecx« 6o let t‘(n) = t(n/c) and define

By, el™ = Pglm) + T () (2.19)
so that §,(n) = lim §

€0 8,¢°
to 0 on [-c,0) is not important, though we do require that ;3 € < 93. Now extend Py
’

As earlier, the manner in which ;6 c decreases from ps(-c)
4

to 0 < n<t as an even function and ss't to 0 < n <1 as an odd function, retaining
the same symbols for the extended functions. The extended functions will be in class

c1'B if 93(0) = 0; otherwise 96 is merely Lipschitz continuous at 0. We also
require the function s defined by

s(n) = ~ggn(n) (2.20)
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where the signum of 0 s 0. Now, suppase £ = [(t) is a smooth decreasing cutoff
function, equal to 1 for 0 <t ¢ 1 andequal to 0 for t > 2. Replacing t(p,',pz)

in (2.18) will be

2 2 2 2
Py * Py Py * P, .
ARy oP) = & T T ln e CATS) + 0 - (=) (2.21)

2 2
vhere £ (p,,p,) = &(-5—2) so that a= 03 + p21/2 when p ¢ p) >’ Le

r
a, = a./apl and nij - 32,/3piapj. The function a is globally convex in (p,,pz),
uniforwly in x,, for «r sufficiently small, and satisfies the following inequalities

{proved exactly as in [1], lemma 2.1).
1 2 2 1 2 2
2 %Py * P} € alpyipy) <3 9y(py + py) ]

2 2 2 2
os(p' + pz) < a.p, + ap, < a“(p1 + pz) 2,221

2 2
a, +a_« as(a1p1 + a

1t )

2P2

ved ¢ ) < aee J

Here O for 1 € 1 <5 and Vv are positive constants independent of "2' €, P, and

i
Pae

B = Lxxy) | Ix) <k, Ixyl <1} (2.23)

and get ﬁ. =~ R, Let Cy denote the ¢ functions on @ which are 2x periodic in

x, and have support not containing points where x, = 1. The symbol c; Qenotes the

elements of C, which are even with respect to Xy and Xx,. Since the functions in Cp

and c; vanish when xy = =1, the Poincar§ inequality guarantees that the expression
Wi = (f w32 (2.24)

flk
provides a norm, and the completions of the respective spaces in the norm are denaoted by
(]

l-lk - nk(ﬁ) and nk = H:(ﬁ)- The symbols “k_ and H: will also be used in later
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sections to denote the restrictions to § of functions in those spaces. Thus a function

in u:(m is even in x,. Por we H;(ﬁ) define the functionals

Aw) = [ pylxy)alx,, W) (2.25)

a ° 2
Blw) = -f 8} (x)) ¥ (2.26)

where integration is over 6!: here and in the remainder of this section. The notation

i', B' will be used for the Prechet derivatives of the functionals in u:(ﬁ).

Our subsequent program is briefly described as follows. We show that for each R > 0

positive in %‘ and

the equation (2.27) below has a solution (A,w) with w= 'k,c,c
norsalized by i(v) - 232. Restricting attention to the lower region % we show that for
€ converging to zerc through a suitable subsequence we obtain a function w which is
smooth on nk and satisfies (3.23), essentially the restriction of (2.27) to nk for
€= 0. For R suitably restricted, ([Vw| < r and we can show that (A,w) satisfies the
original equation (2.12). All estimates obtained are uniform in &§> 0 and k > 0.
Taking limits of solutions as these parameters vary we obtain the desired wave forms.
Until we consider limits involving the parameters k, §, and €, we selectively suppress
them, It is assumed that k < ® until Remark 5.3. Through the penultimate paragraph of

section 4 it is assumed that § > 0, while for the remainder of this section, it is also

assumed that € > 0.

Proposition 2.2. For each R > 0 the problem
A'(w) = XB'(w) (2.27)
has a solution ()\,w) satisfying A> 0, we ll:(fl), Aw) = 2%, and w >0 in f. The
function w is characterized by -

Blw) = sup, Btvh) (2.28)

Veﬂk

A(v)=2r?

where v' = max(0,v).
Proof. The proof proceeds as that of Theorem 2.1 of [1] with H: replacing Hye. The

variational procedure leads to M(¢) = 0 for all ¢ e H:(f&) and for a suitable A > 0,

-18-




where M is defined by

we) = [ (p(x,)a, (x

TSRS
N 2,Vw) 3‘1 + lp'(xz)v . (2.29)

The derivatives of a are easily seen to satisfy 01(x2,-p1 ,pz) - -11(::2,1;1 ,pz) and
‘1("‘2'91'-92) = a‘(xz,p1 ,pz), while a, has the opposite parity; i.e., even _in Py
and odd in ("2192)' Purther p and §' are even in X5« AS a consequence one finds
that M annihilates all functions ¢ which are odd in Xy or in x, or in both. Then

M is zero on all test functions and the remainder of the proof follows as before.

Remark 2.3. According to {24], Theorem 6.3, the smoothnegss of w, restricted to the

original region 1, is limited only by the smoothness of p. Thus with "6 e c“ B, w is
of class ¢ in each subdomain of 4.
Lemna 2.4, The multiplier A occurring in proposition 2.2 satisfies
C1 < A< C2 (2.30)
where C;, C, depend on the total variation of p(n).
Proof. Since p(0) = 1, it follows from (2.27) and (2.22) that
A 2
A= M >C LL'.'.LE. (2.31)

<B' (w),w> -[ p'w

w

since -/ prul =2 ) w3 ¢ o-1) fwz + ('a'ﬁ)z < cp(=1) | {wi? a lower bound depending

n
on p(-1) results.

In a similar fashion

-1 -1_2
- <A () s> 20,0, Alw) . 49,0, R (2.32)
<B'(w) ,w> ~ B(w) Blw) *

follows from (2.22), (2.27), and the characterization of w. The last quotient in (2.32)

can only become larger {f w is replaced by any function z € " having i(:) - 2R2. Let
Y

CLI
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z = Y(1 - l"l)l Y > 0.
Y is chosen to achieve

with C, depending upon

oy

From (2.22) it follows that Y

Atz) = 282,

p(=1).

%ok < Atz) < Yo ko(-1). Wow if

a simple computation using (2.32) shows A < Cz,




3. ESTIMATES FOR THE EXTENDED PROBLEM

In this section somes additional notation will be useful. When %, ¢ 0 the expression

for a in (2.21) reduces to a function of p, and p,

2 2 2 2
Py * Py Py * Py .
alpyep,) = &, m*- o - Er) 3 . (3.1)

A functional similar to (2.25), but associated with q‘, is defined by the expression
Alw) = [ pelx,datW) . (3.2)

Let § = c(x’) be a cutoff function, i.e. an element of C;(l) with range in

[0,1). Let

an = {(x,,x,) & RIg= 1} (3.3)
and

Q' = {(x,,x,) e alg> 0} . (3.4)
We make a standing assumption that |{'| < 2, thus restricting the nested domains
Q" C ' somewhat, but avoiding a dependence on §' in the estimates we'll make, which
will be the typical interior type, relative to the variable X4+ The constants occurring
in the estimates will be denoted by C, possibly with a subscript or superscript, or in
the case of a HSlder exponent, by the letter a. These numbers will depend upon the
saximum density p(=1), upon the positions of the discontinuities in p in (1.29), and
upon the size of p' where it is continucus, but will be independent of ¢,§, and the
period 2k. The estimates also depend on a(xz,p1,pz) and its derivatives with respect
to py and Py but in an inessential way (cf. [1], section 3). By lemma 2.4 we can also
absorb the dependence on ) into the constants referred to. Having indicated that the
parameters C and a depend on the given density § we will usually not display the
dependence. In general we still suppress the parameters ¢, § and k. Throughout this
section §> 0 and k < @ at the end we display the ¢ dependence and let ¢ approach

zero. The immediate aim is to obtain estimates of w and its derivatives in terms of

-21=




integrals of |le2 over subregions of § It follows from (2.22) that

k.
[ 1vel? < ¢ atw (3.5)

B

2

and thus the various normg of w can be estimated in terms of the size of R® = A(w).

Lesma 3.1. There is an a > 0 such that the solution w in proposition 2.2 satisfies
wi? < 1w? (3.6)
c(ga") Q°

Proof. This is immediate from the known results on elliptic equations ([25], Theorem

8.29), for w satisfies
3~
= a,. = M(pw) - pw_ ) (3.7)
3xi i3 3xj x, x,

- 1
with a . =9 g aij(xz,ti)dt.

i3
Remark. The gymbol a occurring in subsequent results and in Theorem 1.2 should be

understood to be the smaller of the exponents occurring in lemmas 3.1 and 3.2.

Lesma 3.2, Let w be the function occurring in Theorem 2.2 and let v = v, . Then there
1
is an a > 0 such that

e, <, [iwi? (3.8)
R a
and
Wil <, [ 1w, (3.9)
c*am) 2

Proof. This lemma combines lemmas 3.1 and 3.2 of (1], and the proofs are essentially the
same. FPirst one shows
[ it ce [ tww? (3.10)
nl a.

for Q" C Q" C Q' using a cutoff function adapted to " and ' and a test function
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¢ = 3%- czv with (2.27) (equivalently (2.29) with w e w. Inequality (3.9) is then a

congequence of theorem 8.29 of {25], completing the proof.

2

In addition to a global estimate of Vv in L“ the following local estimate will be

used. For convenience we'll assume 0 < a <, in Lemma 3.2.

Lemna 3.3, Let v = v, be as in the previous lemma and suppose A(w) = Rz. Let
1
x = (;1,;2) be a point in 4 and Bo C fi the ball of radius o < 1/4 centered at Xe

Then

( 1w)V2 ccro® (3.11)

B .
where 9

1 XM
2
R = [ [ |Pw] “ax, ax,
-1 -

and a is the exponent from lemma 3.2.
Proof. We use the ideas of (25], chapter 12. Let G be a radial coordinate with respect

to an origin at x and let V= 0(;) >0 be a c' function with support in 320

(suppose B o C ﬁ; otherwise extend w to be odd and p even about x, = %1, obtaining

2
a weak solution of an equation on a larger region). Suppose that ¥ 1 on B° and that
9%} € 2/0. Let h(xz) = -XS(xz) and note that |h| has a bound depending on the

maximum density p(-1). If ¢ is any test function, (2.27) yields

3
[ oa,(xy, %) % o=/ (;;; () = h o)y .
2

Wwith Y = v(x) and ¢ = 33— [tz(v = Y)] the last equation can, after integration by
1

parts, be written as

= B 42 (vavt] = [ (2 32 )
- [,x‘ ea,) el J (3x1 hv) 7y ¥ 7] jh"‘z e (Foe-m)

where integration is over 520 unless indicated otherwise. Or,

~23=~
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2 3v_
Bxi

~ [ ¢a

. a,& [2vv, o v

- hux1[2wx2(v -+ ¥ -':-:—] ~ [ hw

K (20 (- e ¢
2 2

%3

Since p > 1, |h] € C'; a > v, as

L]
ik a quadratic form; and ,aik, < cv,

[ 1w < e [ 2191wl v - vl

s et [ 2009l Iy - vl + ¢t [ ¥ (v —" oy, 5ol
2

Using the inequality 2ab < c;z + % b2 to absorb terms involving Wv into the left member

of the last inequality and to combine terms involving Vw we arrive at

I ¥R1wel ccp [1mntie - P e, [ #iw? (3.12)

Now let G = c(xi) be a cutoff function which is equal to 1 on 520 and vanishes for

x' = x1 - 1. Then

*

)
v (x1,x2) - f ™ c(l)vx (s,xz)ds
2 - 2

x'-1
80

X, +20 X +20 x
) 1 5, 1 )
/] 0" ‘f / VI e e )as)

x
- 2 2
20 x1-x1 20 x2=x2 29 x, 1

X, 420  x,420 x 41
! 2 ! 2 22 2
c'f lf / (wS + %S )dsax, Jax, < c"(R'}°0 (3.13)
z 2 z x2 xzn 2 1
x1-2d xz-za x1-1

where use has been made of (3.8). Since, by (3.9), v = v has a c“ norm bounded by a

1
multiple of R', it follows from (3.12) that

/ v“'IVIvl2 < c1('§’)2(R')202°-02 + cz(R')z(o + 02)

.

It is assumed that 0 < a <1, so (3.11) follows.

Recall the notation n' € oee ¢ nN for the points of discontinuity of the density »p

given in (1.29),
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Lemma 3.4. Let w be the solution occurring in proposition 2.2 and let r be the cutoff

parameter associated with a in (2.21). Then there is a constant C such that for

-1 <€ x2 <0
w (x.,x.) € 2rp(n)/p(0) + CR' (3.14)
xz 1772
while for -1 < x2 < =e <0
-w (x_,x.) € 2rp(n’)/p(0) + CR' (3.15)
x2 1772
where
0o *1*? )
R = [ | 19w(s,t)] “dsat (3.16)
-1 x =2

1

Proof. If -1 ¢ x, < n“/z the result follows by using a comparison argument in the region

Q' = {(s,t) | Is ~ x1| <1, x, <t<0)

2
The fact that p'(t) € p'(t) allows the proof of lemma 3.3 of [1] to be carried over with
constants depending on the width In“l.

For U& nN < x, < 0, the inequality (3.14) is obtained from a comparison argument on a
region where the second variable is between nN and x,. Let Q= lnN - x2|. To simplify
notation let (xy,x,) be the origin of new coordinates (x;,xi) and then omit the primes
to obtain a region

= {txx,) | Ixg] <1, -a < x, <0}

2
We continue to use the expression p(xz) for the density in the new coordinates and let
-q (g » 0) be a lower bound for P, oOr fl. Note that a in (2.21) is independent of

2
spatial coordinates in the region under consideration. Let Q be defined by

]
Quw = 3'1 D(xz)li(Vv)

and observe that for the solution w, Qw = Xa'w € 0. If u is constructed so that
u(0,0) = w(0,0), u<w on 35, and Qu > 0 in 5, then according to theorem 9.2 of

{25}, uw<w &n . It will then follow that v, (0,0) Cu_(0,0). For u take
2 2
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u(x‘.xz) = w(0,0) + v (O,O)x1 + Aaq + Ae (3.17)

1 3

where
1
g(x',xz) = Re([-(x2 + ix,)] +c)

(a from lemma 3.2) and

*,

elx,) = [ (sa”' + 2p(-a)/p(s))as
0

1f lux | is larger than the cutoff r then (cf. (2.21))
2
3 du -1
Qu=+-—0p(x,) = —=p Ag_+A.d
ax1 2 3xx Xy 7%, 3

since g is harmonic in @. Then since ng | € (1 + a)(1 + dz),
2

AS > un(l + a)(d + da) (3.18)

will insure that Qu > 0 on 5. Since

-1 2
uxz > Aagxz + 53‘”2d + 2p(-d))/o(x2) > -A°(1 + a1 +a) + Ay

having

2

Aa Aa(l + a)(1 +a°)>r (3.19)

suffices to give [ux { > re The term w(0,0) + v (O,O)x1 is of order R' according to
2 1

+
lemmas 3.1 and 3.2 and since g is negative and of order |x 1+a

1| when x, = 0 it will

suffice, as in (1], lemma 3.3, to choose Ac > C'R' to have u < w on that part of 85

where x; = 0. As in the lemma cited, u € w will also be satisfied where x4 = £1 and

;2 < xy < 0 for some ;2 e [-4,0), with such a choice of Au. On the remainder of the

boundary of 5, i.e. where Xy < ;2, e < ]xz 1eds < ;2 < 0 Since the firgt three terms
0
on the right side of (3.17) are of order R', a choice of A_ > C"R' will make u <0 on

3
this remaining portion (recall w > 0, so u € w). The coefficient A, can be increased

if necessary to satisfy (3.18) and (3.19), and can ultimately be chosen to be of size

-1
r + CR'. Since u {(0,0) = 2A30(-d)0 (0) (in the new coordinates) a bound for
2
Ve (0,0) follows; namely, the upper bound for v contained i{n (3.14). The bound from
2 2
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below follows in a like manner, using the fact that pk e" 33 for Xy < -¢, and hence
’

can be estimated independently of €.

lemma 3.5, Define B by

Ble,v,w) = (3.20)
Il v(x,,0)w(x,0)dx,, €=0
r

vhere T is the function occurring in (2.19) and l‘k = {(x1,0) | |x1| < k}. Suppose

€, 0, w,—-w in Hk' and v

b 3
being weak. Then

=~ v in Hk for j = 1,2,..., the convergence in Hy

3

lim 8(¢ ,w

3 ) = B(0,w,v) (3.21)
oo

o~

373

Proof. An integration by parts produces the expresaion
B(e,v,w) = B(O,v,w) - [ TV Wt v ) (3.22)

Qk 2 2

There is a continuous linear map taking an element of B, to its trace in H"

2

(Pk)
{(26], theorem 9.4). Since this last space embeds compactly into Lz(rk), the trace of
vy {or vj) converges strongly in Lz(rk). The weakly convergent elements vy and vy

lie in a bounded set in H,, from which it follows that (-5:—- v j)wj + vy lies in a
2

2
axz 3
bounded set in Lp(ﬂk) for any p < 2. S8ince T, converges to zero in LF for any

r < ®», it follows from HSlder's inequality that the integral term in (3.22), evaluated
with € = ej, v = vj, and w = 'j' converges to zero as j + o,
Proposition 3.6, Por each § >0, k>0 and R> 0 there isa 1> 0 and

verl nc?@ nc®'@ witn w30 and A(w) = R such that

A'(w) = XB'(w)

in the notation (2.18) and (3.2). That is
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| pga thre = A f Béwo (3.23)

ﬂk i

for all ¢ € Hk(ﬂ). The function w is an extremal for the problem

o ()2
sup , (-1) [ o&(xz) “2 (3.24)
A(u)=R Qk
ueﬂ:(m

Moreover, with the restrictions that Ba C 9 and that @1 is replaced by 2 in
definitions (3.3) and (3.4), the estimates (2.30), (3.6), (3.8), (3.9), and (3.11) hold
uniformly in § and k, as well as .

e 1 < 2rp(n')/p(0) + CR® (3.25)
2 L (Q)
with R' defined as in (3.16).

Proof. Let vt e H:(ﬁ) denote a solution obtained from proposition 2.2 for 0 < € < %
and let ﬂe - {(x,,xz) ed | x, < -¢}. Prom (3.,5) and lemma 3.1 we know that,

independently of §,k and €, the functions w® lie in bounded sets in Hk(ﬁ) and
ca(ﬁ). Likewise from lemmas 3.2 and 3.4 the derivatives w: lie in a bounded set in
1
ca(ﬂ) and the derivatives v: are bounded in L.(Qc). In addition, since Ps e is in
4

C"B(-1,0). it follows from qiuuilinear elliptic theory ([24], theorem 6.3, p. 283) that
for each 1> 0, w'e Cz'a(ﬂn) with bounds depending on §, but uniform in € as ¢
approaches 0.

Let € take the values Z'j, j=1,2,..., and let wj denote the corresponding
solution. By the Arzela-Ascoli theorem a subsequence w1'1,w1’2,... converges in c°(é)

and in 02(01/2)

/4

to a function w. A further subsequence Wy,9¢W2 20+ cCONVerges in
’

cz(ﬂ1 ) to w. Continuing, we find the usual diagonal sequence "j = vy, converging

to w in cz(ﬂn) for each n > 0, Moreover, the estimates cited at the outset of the

proof give bounds on w € Co(ﬂ) and on %ﬁ- e ca(ﬂ) as well as the estimate
1

b 1 < 2rp(m)1/p(0) + cr' .
2 17
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It follows that v € Cz(ﬂ) and has an extension to § which is in c°"(§). Clearly,

then, w € u;(n).

Iw l2 CCAlw,) = CRZ and go, for a further
bl Hk b

subsequence (also denoted wj), it can be assumed that vy converges to w

Next, it follows from (3.5) that

weakly in Hk(ﬂ) and strongly in Lz(ﬂk). Since u(p1,pz) is a convex function, the
functional A(w) 1is also. Then the set of u for which A(u) € Rz is convex and, as
wj converges weakly, A(w) < Rz. Let SG,c with €= cj be dencted by ;j' let
ij - f 8;('3,2' and let 2b = f 5'w2 (here and in the remainder of the proof all
integrals are taken over ﬂk unless otherwise indicated). It is then immediate from the
known convergence of vy and lemma 3.5 that bj +5 as ]+ -,
Let the extreme value in (3.24) be denoted by b. First we show that b<b is
impossible. If b ~ ; = d > 0 then from the characterization (3.24) there is a
ue H;(ﬂ) satisfying A(u) = R2 and f 53(u+)2/2 >b = d/3. Then from lemma 3.5, for
all sufficiently small positive ¢, ] 53,:‘“*’2/2 > b~ 4/2. But then since wt is an
extremal for the problem with ¢ > 0, f Bk'e(vt)z/z >b - d/2. This is incompatible with
having bj converge to b=b=-aqa as j » », We have shown that aA(w) < Rz and
] 53w2/2 > b. However, neither of these inequalities can be strict without contradicting
the characterization (3.24). 1In particular, if A(w) < Rz, one easily shows that
Altw) = R2 for some t > 1 with a corresponding supremum larger than b in (3.24).
As regards the equation (3.23), since wc is even in x,, we conclude from (2.27)
that for each € > 0
/ pctxz)ailwt) -:-3;- A€/ Bé'ev':o (3.26)
for all ¢ e Hk(ﬂ). It is easy to verify that for i = 1 or 2,
la tpyspy)l € clipyl + ip,1) (3.27)
(cf. [1] lemma 2.1) and thus for ¢ € C°'1(ﬂk) the integral of pG‘L‘ii over nk - "
/2) the

will, by H8lder's inequality, be 0(1\1 uniformly as € + 0, Thus with €= ¢

jl
left hand member of (3.26) converges to the left hand member of (3.23) as j +» = Since
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€
A 3 satisfies the inequalities (2.30) it can be assumed, without loss of generality, that

€
A ) converges to a value A satisfying (2.30). It then follows from lemma 3.5 that the

right hand member of (3.26) converges to the corresponding term in (3.23). Thus (3.23)

holds for ¢ € Co'1 and the extension to ¢ € Hk follows by continuity.
We next show that (3.8) holds for the w just obtained. Let vj - ('j)x and
1
v=w . From (3.8) it follows that for Y > n> 0
1
[ Iijlz <e, ] |v\.j|2 se . |v..j|2
Q g QN Q'\Q
and hence for each Y > 0,
/ Y 1wl? < c, | ]2 (3.28)
a“g Qr
provided
k 0 2
UaTlim [ [ (W,)“=0 {3.29)

M0 e -k -n )

If (3.29) does not hold, then from (2.22) and the observed convergence of Ae to A,
uniformly on bounded sets in Hy,, it will follow that there is a sequence W * 0,

m= 1,2,... such that

.k 0 .2
1im [ [ pa{Pe) > (R)7> 0 {3.30)
J*® -k -7
m
for all m. But then
k nn k nn 2 + 2
[ | oea(%w)=1im [ [ pa(W) < R = (R') (3.31)
x -1 jow =k =4
2

for all m., If m approaches infinity (3.31) yields A(w) < R, which has been ruled
out. It follows that (3.28) holds for each Y > 0 and hence with the integral taken over
all of Q%, completing the proof of (3.8). The other inequalities listed in the
proposition are done similarly.

Since w € cz(ﬂ) the following result is immediate from (3.23) and the strong maximum

principle (cf. (3.7)).

=-30-




Corollary 3.7, The function w in the previcus proposition satisfies

3
3x1 Da(xz)li(Vv) - lp%(xz)v {(31.32)

in 2 and is positive there.
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4. A RETURN TO THE ORIGINAL PROBLEM

Here we show that the solution (A,w) of A'(w) = AB'(w) given by proposition 3.6
is, for suitably restricted R, a solution of the "physical®™ problem (2.12). We also
obtain additional estimates which complete the assertions of theorem 2.2 (except
exponential decay) in the cagse § > 0 and k < =,

In section 3 estimates were derived for w and v = 'x1' The norms of w and v in
c® andof W in 12 ona region Q" C  were estimated in terms of R', the 1?
norm of Vw on a larger region ' C Q (cf. proposition 3.6). 1In addition in (3.11)
the L2 norm of ¥v on a ball B, C 9 was shown to be of order Ro® and in (3.25) an
L. bound was given for vxz in terms of r and R'. Our next step is to obtain bounds
on w_ in terms of R' alone. We require a preliminary lemma. Recall that A in (3.2)

2
involves a from (2.21) with a cutoff parameter r.

Lemma 4.1. Let w be the function occurring in Proposition 3.6. There exist positive

constants r, and R, such that if A is defined using a cutoff r < r, and

Alw) = Rz < R2

0’ then v = w satisfies
x

1

2

[ 1w 12<c [ 1wl (4.1)
s * s
where
N
s” {(x1,x2) | b1 < x, € bz, -1 <x, ¢ n/s2},

(4.2)

N
s'-((x1,x2)|b‘-1<x1<b2+1,-1<x2<n/4},

s' C “k'

Proof. This lemma is a counterpart to lemma 3.4 of [1] and the proof is similar. One

starts with a test function ¢ = 5%— czvx in (3.22). Here, however, the cutoff function
1 1

is taken to be 1 on S" and to vanish outside of S' given by (4.2). Now that ¢

depends on X, as well as on Xqe
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] 2 3
v - 7 e + 2‘ v .
3x2 x, ‘xz x,

In the earlier case just cited, the term with cx was not present, but the new term is
2
easily incorporated into the estimates in terms of a constant involving the gap |rF|.

Lemma 4.2. Let w and Ry be as in the previous lemma. Then there is a positive

constant r ¢ r, such that {f A is defined using r = ;3 and Q*"cC @' C Qk,

1

fw_ 1 < CR' (4,3)
x -
2 L (Q%)
where

172 (4.4)

2
R = (/ 1w®)
nl
Moreover, if f 1s a closed region not containing any points of discontinuity of o in
(1.29) then
wa ] a . SC'R (4.5)
2 ¢ (a"NQ)
for all sufficiently small § where a is the exponent from lemma 3,.2.

Proof. The estimate (4.3) for x _ <« n“/z is shown as in lemma 3.5 of {1] with one small

2
change. 1In the present context the function v need not vanish on each line x, =
2
constant. However, since lwl - S C'R', v is of order R' at some point (x1,x2) for
L 2

each Xq0 by the mean value theorem, and this suffices for the argument. An argument

given in the lemma cited alao shows that the oscillation of v, over a distance 4
2
satisfies

otc(vx ) < cr'a® (4.6)
2

in the region where x_ < n“/z, where C does depend on a bound for |ox | in the region

2
{and hence is independent of §, for small &, in a region 8 containin: no
discontinuity of p). 1In the present context lemma 4.1 is used.
Now consider the region
< 0}

0 N
Q = ((x,.xz)ln /2 € x,
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and recall that Ipx | 1is bounded in ﬂo. independently of §. Prom Corollary 3.7, w
2
satisfies the equation (3.31) in 0°; that is,

D(xz) I an(Vw)w‘lxj + pl.z(Vv) = Ap'w . (4.7)

1t Bac 00 N Q" is any disc of radius 0, then from (4.7) it follows that

o 1= - 1 -Plaz(wwfx-glv]z (4.8)
B

XX '13')( x [}
Ba 272 s 822 2<4+3<3 i3

The expressions "13"22' and |[p*'/p| are bounded above in ° so the expression on the
right in (4.8) can, according to proposition 3.6, he estimated using lemmas 3.1 to 3.3

together with inequalities (3.13) and (3.27). The result is
! 12, 20
/ v, o 17 € R + 0) {4.9)

where a (assumed to satisfy 0 < a <1/2) is from lemma 3.2. The estimate (4.9) together
] with lemma 3.3 shows that

| 1w 12 < c(r")2e??
X
B, 2

and hence by Morrey's estimate ([25), p. 158, combined with the Schwarz inequality) the

oscillation of v, over a distance 4 in n° gsatisfies (4.6). This estimate in n°
2
combined with the estimates for x, < n“/2 yield the assertions of the lemma.
From lemmas 3.1, 3.2 and 4.2 the following result is immediate.
Corollary 4.3. Under the conditions of the previous lemma
1wl () < CrR' (4.10)
0,1
C
and
bt . o SC'® (4.11)
c 'ramng)
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In what follows the notation (2.18) for F(w) and B(w) will be used and for the

remainder of this section an integration is over nk unless otherwise indicated.

Proposition 4.4. There is an Ry > 0 depending on the density p in (1.29) such that for
each § in (0,60), k>0, and R in (0,R1) there is a 1> 0 and a nonnegative
ve ) n @ nc®@ with rw) = B2 ana
F'(w) = AB'(w) . (4.12)
The pair (A,w) 4s a solution of the problem (2.12), i.e.
3‘3‘; D(xz)fi(Vw) = Ap'w in 2 (4.13)

and

w=20 on xz--1

(4.14)

p(xz)fz(Vv) = Aw on )t2 =0

where p = Pg (cf. (1,34)). The estimates (4.10) and (4.11) from Corocllary 4.3 hold
uniformly in § and k.
Proof, From lemmas 3.2 and 4.2 there is a positive Ry such that for R < R,, | Wl < Te
Thus A(w) = F(w) and Ai(Vv) - fi(V\v) for i = 1,2 so that (4.12) follows from
Proposition 3.6 and (4.13) from Corollary 3.7. Naturally w= 0 for X, = -1 and all
estimates for A and w persist. In particular, from Corollary 4.3 it follows that W
has a uniquely definead ca extension to the line x, = 0. We assume the extension is made
and can then explicitly express the houndaﬁ condition which is implicit in the weak
equation (4.12).

Let g = g(x,) be an arbitrary 2k periodic, c' function and for 0 < 8 ¢ 1 let
"("2) = max{1 + -"xz),o}. Using (4.12) to write <P'(w),$ = A<B'(w),$ with

- 9(x1 )H(xz) one obtains

k 0
-1
_£ _£ p(xz)l!1(VV)gx1H + £,(%igs )

k 0
) [_£ P' (x, Jwghax, + wix,,0)g(x,) Jax, .
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Since p(xz) approaches 1 as x, approaches 0 and p' is bounded near x, = 0,

the limit as s + 0 gives
k k
_l{ £,(w(x,,0))g(x,)ax, = A -1{ wix,,0)g(x,ddax .
Since g {is arbitrary, the remainder of condition (4.14) follows and the proof is
complete.

The material in section 4 of (1] shows that in the case of a fixed upper surface, the
atreamline displacement w can be assumed to be even in x for each N and nonincreasing
in x as x runs from 0 to k. That is, an extremal function w for the appropriate
variational principle can ba replaced by its symmetrization (decreasing rearrangment) w
without destroying the extremal character (cf. [1], [27]). Here again the proofs carry
over with some minor modifications which are furnished by the following result. The

functional N defined below is part of the functional ¢ in (2.1) and enters in the proof

of lemma 4.3 of (1]. Using evenness, it will suffice to consider ¥ <€ 0.

Lemma 4.5. Let u = u(x,¥) be a nonnegative piecewise linear function defined on
Dk - (=k,k] x [0_1,0] and suppose u has a continuous extension to R X [0_1,01 which
is 2k periodic in x. Let yi(x,¥) = §(¥} + u{x,¥) where ¥(¥) is the inverse funtion

to (1.16) and assume Yy >0 a.e.. Define

1+ yi
Ny) = [ T dxay {4.15)
D, ¥
8o that
: Oy
KN (y),0 = [ — dxdv {4.16)
Dk yv

Then if a(x,¥) and y(x,¥) are the symmetrizations of u(x,y) and y(x,¥),
respectively, it follows that

N'(P),w> = <N (), (4.17)
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and
N(y) € N(y) . (4.18)

Proof. One property relating u and u is

X Kk
[ utx,¥)ax = [ a(x,yax (4.19)
-k -k

for each ¥ ([27], Note A) so that

| atruix,¥axay = | g(¥)ilx,¥)axay (4.20)

D
Dk k

for any integrable g. Hence

! 1 Ik 7 0
Y “V - :E udx
D

-f.a.(.‘_)“,
. y* -« yO b 3y ‘o2

W_, k Y*
from which (4.17) follows (in fact (4.17) is used with “(x1"L1) = 0).
The integral defining N, when expressed in the variables x and y, 4is a Dirichlet

integral and so (4.18) reduces to showing

] 1961%axay < [ 1991 2axay (4.21)
59 Sy

where

Sy = {(x,y) | Ix} < kX, =1 <y < y(x,0)}
and 59 is defined analogously. The methods of Polya and Szego ([27], Note A) can easily
be adapted to the case at hand. For periodic functions one shows that the area of the
surface y(x,y) over Dy is at least as large as the area of the surface Q(x,v) over
Dy« Expressed in (x,y) coordinates this yields

[ N e vidaxay < [ o+ jee)Paxay .

8 ]

b4 y

Applying the last inequality to t¥ and t@ for t > 0 gives
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J e @imn? co®in < f 0+ g o v o, (4.22)
S S

? b4
Replacing u by y in (4.19) one sees that Sy and S,
contribution of the "1" in each integrand of (4.22) can be omitted. If the remaining

inequality is divided by % tz and t is allowed to approach zero, the inequality (4.21)

have equal areas. Thus the

is the result.

Proposition 4.6. There is a function w satisfying the conclusions of proposition 4.4

which, in addition, satisfies w =9 and w > 0 where =1 < x2 < 0.

Proof. As noted, the assertion that one can take w = @ in proposition 2.2 and.thereafter
follows from the arguments of [1], section 4 together with lemma 4.5. The positivity of
w in nk follows from corcllary 3.7. On Pk we have w nonincreasing for 0 < x < k
and fz(Vw) = Aw. Since wx'(o,k) = 0, having w(0,k) = 0 would entail fz(o,vxz) =0
at (0,k). Since f, = a, for the solution w it follows from (2.22) that

'x (0,k) = 0, violating the strong maximum principle.

2
The linearization of (4.13), (4.14) about w = 0 is the problem

] z >
ry p(xz) e Ap'(xz)z in Qk
i i
z=0 on x2 = =1 (4.23)
3z ~
3x2 Az on X, 0

The lowest eigenvalue (denoted u) for (4.23) can easily be shown, through separation of
variables, to be positive and to correspond to a function of x, alone, £ = E(xz) >0
which solves the Sturm-Liouville problem obtained by omitting x, dependence in (4.23).

It also provides an extremal for

! 2 2
sup [[ o0&+ 5(m)], (4.24)
Il 2 0
PE =1
0 n
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the analogue of (3.24). The solution § can be obtained by a shooting method or by using

(4.24).

Lesma 4.7. The "lowest™ eigenfunction £ for (4.23) satisfies E'(xz) > 0.

Proof. One integration of the ordinary differential equation for { = E(xz) corresponding
to (4.23) gives
p(0)E' (0) - p(xz)E'(xz) <0 .
since E'(0) = ug(0) > 0, E’(x2; > 0.
Since lemma 4.7 implies I pﬁi > 0, 4t is possible to use a trial function
-1 *

-C, |x! 2
z = c°€(x2)o ! in (3.24), as in [1]}, section 5, to show the following.

Proposition 4.8. There are positive constants R and X4 (R) such that for
0 < &8« 50, 0OCR<C<R and k> kq(R), the pair (A,w)} 1in proposition 4.3, chosen in
conformity with proposition 4.6, satisfies

A< ur - Y3 (4.25)
and

Twt > C'R‘/3
-

L

(4.26)

where C and C' depend upon ¢ in (1.29)
Note that the inequality
| 19w}® ¢ ¢ max (4.27)
a* Q'
which is used in obtaining (4.26) from (4.25) is valid in the present context and shown

exactly as in lesma 3.6 of [1].

Remark 4.9. The results up to this point, in particular propositions 2.1, 4.3, 4.4 and
4.6, contain the assertions of theorem 1.2 (except exponential decay) for the case in which
density "transitions™ take place over intervals of width &> 0 and in which there is a

finite period 2k in the horizontal direction. All estimates obtained are uniform in §
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and k for each "energy”™ R > 0 and so the limiting case of discontinuous density
(6§ = 0), 4including the pressure condition in definition 1.1 (ii), follows by arguments

strictly paralleling those given for theoream 8.2 of (1].




S. EXPONENTIAL DECAY AND SOLITARY WAVES

The aim in this section is to show that w obtained from propositions 4.4 and 4.6 has
exponential decay on 0 < x < k, as does the gradient of w. The estimate will involve
1" bounds on the gradient and we remark that in order to get satisfactory estimates for

v, up to x, = 0 we had first to pass to a limit, letting € approach zero in the
2
expression 5 » here denoted ; . While there is more than one way to exhibit
$,¢ [

exponential decay we find it convenient to reintroduce the extended domain ﬁ, the

function 3; from (2.19) and the expression a from (2.21).

Lemma S.1. Let ue be the lowest eigenvalue of

3 23

x, ° x

- TS;:, -1 ¢x, €1 (5.1)
2 2

2

z(=1) = g(1) = 0

then
1/2
ue > u - Ce (5.2)

where § is the lowest eigenvalue of (4.23).

Proof. Express the odd function Be as p + te on =1¢ xz €0 as in

(2.19) and let E(x ) > 0 be an eigenfunction for the problem (4.23) corresponding
1

to 4, normalized so that f plx, (€)% = 1. Then since

|1/2

p>1, [ en, |e<x2) - &0 < (] "2 g1y 12)' 2%,

lEz(xz) - 52(0)1 < c lx | /2. Extend E to be even in x,. The variational

, and

characterization of ue enables us to conclude that

1 1
wr-[f o8+ [ ved)
-1

€ K €
! ! 12 12
>-[] o8+ | t;(€2(0) -c,e’)] = u-ce
-1 -1

proving (5.2)
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If ) is fixed with X < u, then for all sufficiently small € > 0, A< e

according to (5.2). Estimates involving the eigenfunctions w n=1,2,..s, and

nl

corresponding eigenvalues Yn for

4 de ¢
dxz P dxz * A8:’ = Yoz
(5.3)

z2{1) = z(~1) = 0
are done exactly as in lemma 7.1 of [1), merely by using the fact that Iscl < p for

-1 < x, € t. The Green's function for

3 3 iz °
Ly= - a“x [ 3‘1 + xo;z (5.4)

with zero boundary conditions at x, = #1 has the form

1/2

- Y Tleext]
Glx =~ x*,n,n') = ,2\ s 7 v (M (n') (5.5)
n

with 71 » Co(ue - ).

Proposition 5.2. The function w from proposition 4.6 satisfies

Jwix,n) | < c.-a'

(5.6)

Ieix,m| < cre BX

for 0 € x <k, for any £ satisfying 0 < B < y:’z. The constants C and C' depend
on p in (1.,29), R, and 8.
Proof. Define V = (V,,V,) where

v1(xz,p‘.p2) = D(pl - '1“2'91'92)) (5.7)

for i = 1,2 and a = a./apl as before. The function V, has the same parity as a;

(ctf. the proof of proposition 2.2); i,s., a, is odd in p, and even in (x,,p,),

while vy has the opposite parity. Both Vv, and vV, are of order pf + p: near

Py Py " 0 and vanish for pf + pg > 2;2-
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Suppose w from proposition 4.6 is extended to be even on S and then extended to be
odd about X, = £1. Convolution of w with respect to a mollifying kernel which is
sysmetric in Xy and xy and has support in the ball of radius ¢ at (0.0) will produce

a family of c2 functions z_ which are even in X3 satisty ;c = g _, and converge

[
to w in Hk(ﬁ) as € approaches zero. S8ince |Ww| < r, it can also be assumed that

IVs‘I < T As in lemma 7.3 of [1) it 1s easily seen that

273
CR
Izt(x,.xz)l < -;173 (5.8)

1
on 0 < x4 <k where C depends on p from (1.29).
Now let w' e "k be the weak solution of
Liw® = div Vixy, V2 ) . (5.9)
Given the parities of V, and V, it is easy to verify that wf(x1.x2) = vc(-xi,xz) is
also a weak solution of (5.9) and since L: is coercive, vf = vc) i.e. w® is aven in
X4+ Likewise 'c is even in x, and 2k periodic in Xqe For 3 =0,1,2,.04,2k = 1
define
B, -{ In®12, b, -5( (o 12 (5.10)
b 3
where ’j - {(x‘,xz) ed) 3¢ x, €3¢+ 1} Fror a positive integer n 1less than k let
b denote the sequence {;j) and b, the sequence {bj} for n €<j <2k - n -1, Now
1f 8 1s & real number satistying 0 < B < Y)’2, it follows as in the proof of lemma 7.4

of [1], (cne can smooth the signum function in a(x,,py,P;) and then pass to a limit) that

By € 7,(b) (5.11)
for n+ 1 € 3 <k where
2k=n~1
- 2 -Bli-31 ~8(3-n)
Tyb) = € Ub ¢ by + by ) [ I e b, + qe ] (san

i=n+1

and

q=cC,e "+

Bn -2/3
A cen .

43
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The solution map taking £, to v‘ is comsinveus from l-lk(é) to Hk(a) and thus as

€c+0 and s converges to w in H,, v‘ converges to & function wo in “k' The
weak form of (5.9) requires
€
Sw_ 3¢ 2y = ¢
I lo g e * Moo =] vy, W
1 1 ak i
for all ¢ e Hk(fl), where 5. is still assumed to be odd in xy. Now, letting ¢ + 0

and using lemma 3.5 to define f 86-00 as the limit of ] Bévco, one concludes that

0
™ 3¢ 0ol = kIR
[ e > T Biw ¢] f Vv, (xy, W) 2. (5.13)
ak i i nk i
But from proposition 3.6 it follows that (5.13) is satisfied i{f v is replaced by w
0

(extended evenly in x,). Letting w - v = z it follows that

[ o1ve1? + a5 =0 . (5.14)

Since the coercivity of L; is uniform for all small €, it follows that z = 0. That

is, w® ana 2 ¢ both converge to w in H, as ¢ approaches 0. But then

b, < b 5.15
3 ‘rj( ) ( )

°-w.

where bj is now associated with w
The inequality (5.15) will imply there is an n, independent of k, such that

b 5 < c.-2Bj for n € j € k according to lesma 7.2 of (1], provided the sequence bj

meets two other conditions. The first is a symmetry condition bkﬂ - bk-1-1 (this shift

in index should appear in (1]; the proof is almost identical) which follows from the

=2/3

evenness and periodicity of w. The second is a decay b,6 ¢ coj which follows from

3
lemmas 3.6 and 7.3 of (1], trivially adapted to the present context. The exponential decay
of bj implies exponential decay of w and W according to lemmas 3.1, 3.2 and 4.2.

This completes the proof.
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Remark 5.3. The resolution of problem § (1.32), the solitary wave problem, is carried
out by letting the period 2k approach infinity just as in theorems 8.3 and 8.3' of (1]
for §=0 or &> 0, respectively. The assertions of theorem 1.2 concerning exponential

decay and the case k = +» are thus covered, completing the proof of the theorsm.

-d45-

L% R




REFERENCES

1. R. E. L. Turner, Internal waves in fluids with rapidly varying density, Annali della
Scuola Normale - Pisa, Ser. IV, 8 (1981), 513-573.

2. J. L. Bona, D. K. Bose, R, E. L. Turner, Finite amplitude steadywaves in stratified
fluids, Mathematics Research Center TSR No. 2401, University of Wisconsin, Madison,
1981; Jour. de Math Pure et Appl., to appear.

3., J. V. Wehausen and E. V., Laitone, Surface Waves, Handbuch der Physik, Vol. IX,

Str¥mungsmechanik III (Ed., 8. Fliigge) Springer-Verlag, Berlin, 1960.

4. Ce J. Amick and J. F. Toland, On finite amplitude solitary water waves, Arch. Rat.

Mech. Anal. 76 (1980), 9-95.

5. A. M. Ter-Krikorov, Théorie exacte des ondes longues stationnairas dans un liquide
hétérogene J. Mécanique 2 (1963), 351-376,

6 K. O. Friedrichs and D. H. Hyers, The existence of sclitary waves, Comm. Pure Appl.
Math. 7 (1954), 517-550.

7. M. A. lavrentiev, A contribution to the theory of long waves, Amer. Math. soc:
Translation, No. 102, Providence, RI, 1954.

8. P. R. Garabedian, Surface waves of finite depth, Journal 4’Anal. 14 (1965), 161-169.

9. V. I. Arnold, Sur un principe variationnel pour les écoulements stationnaires des
liquides parfaits et ses applications aux problemes de stabilité non linéares, J.
Mécanique 5 (1966), 29-43.

10. V. 1. Arnold, Sur la géometrie differentielle des group ds Lie de dimension infinie et
ses applications a l'hydrodynamique des fluids parfait, Ann. Inst. Fourier (Grenoble)
16 (1966), 319-361.

1. G. B. Whitham, Variational methods and applications to water waves, Proc. Roy. Soc.
London, A 299 (1967), 6-25.

12, J. C. Luke, A variational principle for a fluid with a free surface, J. Fluid Mech. 17
(1967), 395-397.

13. T. B, Benjamin, lLectures on nonlinear wave motion, Lectures in Applied Mathematics,

Vol. 15 (Ed. A. C. Newell), Amer. Math. Society, Providence, 1974.

-46-




Remark 5.3. The resolution of problem S (1,32), the solitary wave problem, is carried
out by letting the period 2k approach infinity just as in theorems 8.3 and 8.3' of [1)
[l

for 8§ =0 or &> 0, respectively. The assertions of theorem 1.2 concerning exponential

decay and the case k = +» are thus covered, completing the proof of the theorem.
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